Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Paula X. García-Reynaldos, Simón Hernández-Ortega and Jesús Valdés-Martínez*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, DF, Mexico

Correspondence e-mail:

jvaldes@servidor.unam.mx

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.083$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(5-Methoxy-2-oxidoacetophenone 4-methylthio-semicarbazonato- $\kappa^{3} O, N, S$) pyridinenickel(II)

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$, the $\mathrm{Ni}^{\mathrm{II}}$ ion is in a distorted square-planar geometry, with the $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ ligand coordinated in a dianionic tridentate fashion; the pyridine molecule occupies the fourth position. The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions about an inversion center.

Comment

The title compound, (I), was synthesized with a view to studying the hydrogen-bonding interactions of the NH group in coordinated thiosemicarbazones. The Ni atom in (I) exhibits a coordination number of four with a distorted squareplanar geometry, as indicated by the distances and angles around the metal ion (Table 1). The 5-methoxy-2-hydroxybenzaldehyde 4-methylthiosemicarbazonato ligand coordinates to the $\mathrm{Ni}^{\mathrm{II}}$ ion in a tridentate fashion via the thiolate S , the azomethine N and the phenoxy O atom. The pyridine molecule coordinates in the fourth position. According to the relevant torsion angles, the thiosemicarbazone is almost planar; the methyl group on N3 and the methoxy group on the benzene ring are coplanar with the rest of the ligand (Table 1). The pyridine ring forms an angle of $57.5(1)^{\circ}$ with the mean plane of the rest of the molecule.

Several similar compounds have been reported: ammine(salicylaldehyde thiosemicarbazonato)nickel(II) (Gyepes \& Głowiak, 1989), (II), ammine(salicylaldehyde 4-phenylthiosemicarbazonato)nickel(II) (Soriano-García et al.,1985), (III), ammine(2-hydroxy-1-naphthaldehyde 4-piperidylthiosemicarbazonato)nickel(II) (Martínez et al., 2002), (IV), and ammine(2-hydroxy-1-naphthaldehyde 4-methylthiosemicarbazonato)nickel(II) (Valdés-Martínez et al., 2004), (V). The geometry of these compounds is very similar. The bond distances and angles around the $\mathrm{Ni}^{\mathrm{II}}$ atom in (I) are within the ranges of values observed in (II)-(V), except for the $\mathrm{Ni}-\mathrm{O}$
bond, which is shorter, and the $\mathrm{Ni}-\mathrm{N} 1$ bond, which is longer than the distances observed in the other structures (1.83-1.86 and 1.84-1.86 Å, respectively).

There is only one unique hydrogen bond. The molecules are linked by a pair of hydrogen bonds about an inversion center (Table 2 and Fig. 1). In those related structures where there is no steric hindrance blocking N2, as in (II), (III) and (V), atom N 2 acts as the acceptor of an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

Experimental

The ligand 5-methoxy-2-hydroxybenzaldehyde 4-methylthiosemicarbazone was obtained from the reaction of 5-methoxysalicylaldehyde $(1.66 \mathrm{~g}, \quad 10 \mathrm{mmol})$ and 4-methyl-3-thiosemicarbazide $(0.93 \mathrm{~g}, 10 \mathrm{mmol})$ in boiling ethanol $(100 \mathrm{ml})$ containing 1 ml of acetic acid. Compound (I) was prepared from the reaction of 5-methoxy-2hydroxybenzaldehyde 4-methylthiosemicarbazone ($1.20 \mathrm{~g}, 5 \mathrm{mmol}$) and nickel(II) nitrate hexahydrate ($1.20 \mathrm{~g}, 5 \mathrm{mmol}$) in a $1: 1$ molar ratio in a boiling 10:1 methanol/ammonia solution (75 ml). Crystals of (I) were obtained by slow evaporation of the reaction mixture at room temperature.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
$M_{r}=389.11$
Monoclinic, $P 2_{1} / n$
$a=13.9017$ (12) \AA
$b=6.2419$ (6) A
$c=20.3533$ (18) \AA
$\beta=102.453(2)^{\circ}$
$V=1724.6(3) \AA^{3}$

$Z=4$

$D_{x}=1.499 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Prism, red
$0.40 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer

ω scans

Absorption correction: numerical (SHELXTL/PC; Sheldrick, 1997b)
$T_{\text {min }}=0.691, T_{\text {max }}=0.909$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.083$
$S=0.88$
3952 reflections
223 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.030 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.78 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-O1	$1.820(2)$	Ni1-N4	$1.920(2)$
Ni1-N1	$1.869(2)$	Ni1-S1	$2.1429(8)$
O1-Ni1-N1	$95.32(9)$	O1-Ni1-S1	$175.69(7)$
O1-Ni1-N4	$86.12(9)$	N1-Ni1-S1	$88.52(7)$
N1-Ni1-N4	$174.18(9)$	N4-Ni1-S1	$90.25(7)$

Figure 1
The structure of the hydrogen-bonded dimer of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. the dashed lines indicated hydrogen bonds. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.849(10)$	$2.728(11)$	$3.569(3)$	$171(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
The H atom attached to atom N 3 was found in a difference Fourier map and its positional parameters were refined $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$. H atoms attached to C atoms were located in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$), and refined using a riding model with fixed displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

PXGR thanks CONACYT for a PhD scholarship. The authors are grateful to the Universidad Nacional Autónoma de México and CONACYT (40332-Q) for financial support.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Barbour, J. L. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2000). SMART (Version 5.625) and SAINT (Version 6.23C). Bruker AXS Inc., Madison, Wisconsin, USA.
Gyepes, E. \& Głowiak, T. (1989). Acta Cryst. C45, 391-392.
Martínez, J. V., Hernández-Ortega, S. \& Bautista Jimenez, V. (2004). Acta Cryst. E60, m42-m44.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (1997b). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.
Soriano-García, M., Toscano, R. A., Valdés-Martínez, J. \& Fernández-G., J. M. (1985). Acta Cryst. C41, 498-500.

Valdés-Martínez, J., Hernández-Ortega, S. \& Bautista Jimenez, V. (2002). Acta Cryst. E58, m710-m711.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

